\[\boxed{\mathbf{185}\mathbf{.}}\]
\[1)\ y = \frac{10 - 3x}{x - 4}\text{\ \ }и\ \ y = \frac{4x + 10}{x + 3}\]
\[y = \frac{10 - 3x}{x - 4}\]
\[x = \frac{10 - 3y}{y - 4}\]
\[x(y - 4) = 10 - 3y\]
\[xy - 4x = 10 - 3y\]
\[xy + 3y = 10 + 4x\]
\[y(x + 3) = 4x + 10\]
\[y = \frac{4x + 10}{x + 3}\]
\[Ответ:\ \ являются.\]
\[2)\ y = \frac{3x - 6}{3x - 1}\text{\ \ }и\ \ y = \frac{6 - x}{3 - 3x}\]
\[y = \frac{3x - 6}{3x - 1}\]
\[x = \frac{3y - 6}{3y - 1}\]
\[x(3y - 1) = 3y - 6\]
\[3xy - x = 3y - 6\]
\[3xy - 3y = x - 6\]
\[y(3x - 3) = x - 6\]
\[y = \frac{x - 6}{3x - 3}\]
\[y = \frac{6 - x}{3 - 3x}\]
\[Ответ:\ \ являются.\]
\[3)\ y = 5(1 - x)^{- 1}\text{\ \ }и\ \ \]
\[y = (5 - x) \bullet x^{- 1};\]
\[y = 5(1 - x)^{- 1}\]
\[x = 5(1 - y)^{- 1}\]
\[x = \frac{5}{1 - y}\]
\[x(1 - y) = 5\]
\[x - xy = 5\]
\[xy = x - 5\]
\[y = \frac{x - 5}{x}\]
\[y = (x - 5) \bullet x^{- 1}\]
\[Ответ:\ \ не\ являются.\]
\[4)\ y = \frac{2 - x}{2 + x}\text{\ \ }и\ \ y = \frac{2(x - 1)}{1 + x}\]
\[y = \frac{2 - x}{2 + x}\text{\ \ }\]
\[x = \frac{2 - y}{2 + y}\]
\[x(2 + y) = 2 - y\]
\[2x + xy = 2 - y\]
\[xy + y = 2 - 2x\]
\[y(x + 1) = 2(1 - x)\]
\[y = \frac{2(1 - x)}{1 + x}\]
\[Ответ:\ \ не\ являются\text{.\ }\]