\[\boxed{\text{106\ (}\text{н}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ y = \frac{1}{2}x^{2};\ \ \]
\[y = \frac{1}{2}x^{2} + 4;\ \ n = 4 \rightarrow вверх;\]
\[y = \frac{1}{2}x^{2} - 3;\ n = - 3 \rightarrow вниз.\]
\[\textbf{б)}\ y = - \frac{1}{3}x^{2};\ \ \]
\[y = - \frac{1}{3}x^{2} + 2;\ \ n = 2 \rightarrow вверх;\text{\ \ }\]
\[y = - \frac{1}{3}x^{2} - 1;\ \ n = - 1 \rightarrow вниз.\]
\[\textbf{в)}\ y = \frac{1}{5}x^{2};\ \ \]
\[y = \frac{1}{5} \cdot (x - 3)^{2};\ \ \ m =\]
\[= - 3 \rightarrow вправо;\ \ \]
\[y = \frac{1}{5} \cdot (x + 3)^{2};\ \ m =\]
\[= 3 \rightarrow влево.\]
\[\boxed{\text{106\ (}\text{c}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ y = \frac{1}{2}x^{2};\ \ \]
\[y = \frac{1}{2}x^{2} + 4;\ \ n = 4 \rightarrow вверх;\]
\[y = \frac{1}{2}x^{2} - 3;\ n = - 3 \rightarrow вниз.\]
\[\textbf{б)}\ y = - \frac{1}{3}x^{2};\ \ \]
\[y = - \frac{1}{3}x^{2} + 2;\ \ n = 2 \rightarrow вверх;\text{\ \ }\]
\[y = - \frac{1}{3}x^{2} - 1;\ \ n = - 1 \rightarrow вниз.\]
\[\textbf{в)}\ y = \frac{1}{5}x^{2};\ \ \]
\[y = \frac{1}{5} \cdot (x - 3)^{2};\ \ \ m =\]
\[= - 3 \rightarrow вправо;\ \ \]
\[y = \frac{1}{5} \cdot (x + 3)^{2};\ \ m =\]
\[= 3 \rightarrow влево.\]
\[\textbf{г)}\ y = - 2x^{2};\ \ \]
\[y = - 2 \cdot (x - 4)^{2};\ \ m =\]
\[= - 4 \rightarrow вправо;\ \ \]
\[y = - 2 \cdot (x + 2)^{2};\ \ m =\]
\[= 2 \rightarrow влево.\]
\[\boxed{\text{106.\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\]
\[\textbf{б)}\]