\[\boxed{\text{331\ (331).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ 2 \cdot (x - 18)(x - 19) > 0\]
\[x \in ( - \infty;18) \cup (19; + \infty)\text{.\ }\]
\[\textbf{б)} - 4 \cdot (x + 0,9)(x - 3,2) < 0\]
\[(x + 0,9)(x - 3,2) > 0\]
\[x \in ( - \infty;\ - 0,9) \cup (3,2;\ + \infty).\]
\[\textbf{в)}\ (7x + 21)(x - 8,5) \leq 0\]
\[7 \cdot (x + 3)(x - 8,5) \leq 0\]
\[x \in \lbrack - 3;8,5\rbrack.\]
\[\textbf{г)}\ (8 - x)(x - 0,3) \geq 0\]
\[(x - 0,3)(x - 8) \leq 0\]
\[x \in \lbrack 0,3;8\rbrack.\]
\[\boxed{\text{331.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\frac{1}{x^{3} - x^{2} + x - 1} + \frac{4x^{2} + 21}{x^{3} + x^{2} + x + 1} =\]
\[= \frac{4x^{3} - 3x^{2} + 14x - 4}{x^{4} - 1};\]
\[x^{4} - 1 =\]
\[= (x + 1)\left( x^{3} - x^{2} + x - 1 \right) =\]
\[= (x - 1)\left( x^{3} + x^{2} + x + 1 \right);\]
\[ОДЗ:\ \ \ x \neq \pm 1.\]
\[- x^{2} + 8x - 16 = 0\]
\[x^{2} - 8x + 16 = 0\]
\[(x - 4)^{2} = 0 \Longrightarrow x = 4.\]
\[Ответ:x = 4.\]