\[\boxed{\text{82\ (82).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[Пусть\ a = n;\ \ b = 3n;\ \ c = 2n.\]
\[Получаем\ трехчлен:\]
\[nx^{2} + 3nx + 2n = 0\]
\[D = 9n^{2} - 8n^{2} = n^{2} > 0\]
\[x_{1} = \frac{- 3n - n}{2n} = - \frac{4n}{2n} = - 2;\ \ \ \ \ \]
\[x_{2} = \frac{- 3n + n}{2n} = - \frac{2n}{2n} = - 1.\]
\[nx^{2} + 3nx + 2n =\]
\[= n(x + 2)(x + 1).\]
\[\boxed{\text{82.\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \frac{\sqrt{72}}{\sqrt{50}} = \sqrt{\frac{72}{50}} = \sqrt{\frac{36}{25}} = \frac{6}{5} -\]
\[рациональное.\]
\[\textbf{б)}\ \left( \sqrt{24} - \sqrt{54} \right) \cdot \sqrt{12} =\]
\[= \sqrt{24 \cdot 12} - \sqrt{54 \cdot 12} =\]
\[= \sqrt{3 \cdot 2 \cdot 4 \cdot 3 \cdot 4} - \sqrt{3^{3} \cdot 2 \cdot 3 \cdot 4} =\]
\[= 12\sqrt{2} - 18\sqrt{2} =\]
\[= - 6\sqrt{2}\ (иррациональное).\]
\[\textbf{в)}\ \left( 3 - \sqrt{5} \right)^{2} + \left( 3 + \sqrt{5} \right)^{2} =\]
\[= 9 - 6\sqrt{5} + 5 + 9 + 6\sqrt{5} + 5 =\]
\[= 28 - рациональное.\]
\[\textbf{г)}\ \left( \sqrt{13} + \sqrt{8} \right)^{2} =\]
\[= 13 + 2\sqrt{13 \cdot 8} + 8 =\]
\[= 21 + 2\sqrt{104} =\]
\[= 21 + 4\sqrt{26} -\]
\[иррациональное.\]