Контрольные задания >
1)
$$\frac{1}{(a+b)^2} + \frac{1}{a+b} =$$
2)
$$\frac{1}{a-b} + \frac{1}{(a-b)^2} =$$
3)
$$\frac{1}{x-y} - \frac{1}{(x-y)^2} =$$
4)
$$\frac{3}{(n-m)^2} + \frac{1}{n-m} =$$
5)
$$\frac{2}{x+y} - \frac{a}{(x+y)^2} =$$
6)
$$\frac{5}{2a+b} - \frac{x}{(2a+b)^2} =$$
7)
$$\frac{1}{(m-2n)^2} - \frac{1}{(m-2n)^3} =$$
8)
$$\frac{3}{2(x+y)} + \frac{b}{(x+y)^2} =$$
9)
$$\frac{x}{(a-b)^2} + \frac{2}{5(a-b)} =$$
10)
$$\frac{b}{(x-y)^3} + \frac{10}{3(x-y)^2} =$$
Вопрос:
1)
$$\frac{1}{(a+b)^2} + \frac{1}{a+b} =$$
2)
$$\frac{1}{a-b} + \frac{1}{(a-b)^2} =$$
3)
$$\frac{1}{x-y} - \frac{1}{(x-y)^2} =$$
4)
$$\frac{3}{(n-m)^2} + \frac{1}{n-m} =$$
5)
$$\frac{2}{x+y} - \frac{a}{(x+y)^2} =$$
6)
$$\frac{5}{2a+b} - \frac{x}{(2a+b)^2} =$$
7)
$$\frac{1}{(m-2n)^2} - \frac{1}{(m-2n)^3} =$$
8)
$$\frac{3}{2(x+y)} + \frac{b}{(x+y)^2} =$$
9)
$$\frac{x}{(a-b)^2} + \frac{2}{5(a-b)} =$$
10)
$$\frac{b}{(x-y)^3} + \frac{10}{3(x-y)^2} =$$
Ответ:
Решение заданий:
- $$\frac{1}{(a+b)^2} + \frac{1}{a+b} = \frac{1}{(a+b)^2} + \frac{a+b}{(a+b)^2} = \frac{1+a+b}{(a+b)^2}$$
- $$\frac{1}{a-b} + \frac{1}{(a-b)^2} = \frac{a-b}{(a-b)^2} + \frac{1}{(a-b)^2} = \frac{a-b+1}{(a-b)^2}$$
- $$\frac{1}{x-y} - \frac{1}{(x-y)^2} = \frac{x-y}{(x-y)^2} - \frac{1}{(x-y)^2} = \frac{x-y-1}{(x-y)^2}$$
- $$\frac{3}{(n-m)^2} + \frac{1}{n-m} = \frac{3}{(n-m)^2} + \frac{n-m}{(n-m)^2} = \frac{3+n-m}{(n-m)^2}$$
- $$\frac{2}{x+y} - \frac{a}{(x+y)^2} = \frac{2(x+y)}{(x+y)^2} - \frac{a}{(x+y)^2} = \frac{2x+2y-a}{(x+y)^2}$$
- $$\frac{5}{2a+b} - \frac{x}{(2a+b)^2} = \frac{5(2a+b)}{(2a+b)^2} - \frac{x}{(2a+b)^2} = \frac{10a+5b-x}{(2a+b)^2}$$
- $$\frac{1}{(m-2n)^2} - \frac{1}{(m-2n)^3} = \frac{m-2n}{(m-2n)^3} - \frac{1}{(m-2n)^3} = \frac{m-2n-1}{(m-2n)^3}$$
- $$\frac{3}{2(x+y)} + \frac{b}{(x+y)^2} = \frac{3(x+y)}{2(x+y)^2} + \frac{2b}{2(x+y)^2} = \frac{3x+3y+2b}{2(x+y)^2}$$
- $$\frac{x}{(a-b)^2} + \frac{2}{5(a-b)} = \frac{5x}{5(a-b)^2} + \frac{2(a-b)}{5(a-b)^2} = \frac{5x+2a-2b}{5(a-b)^2}$$
- $$\frac{b}{(x-y)^3} + \frac{10}{3(x-y)^2} = \frac{3b}{3(x-y)^3} + \frac{10(x-y)}{3(x-y)^3} = \frac{3b+10x-10y}{3(x-y)^3}$$
Смотреть решения всех заданий с листаПохожие