№2. Найдите значения выражения:
Давай решим все примеры по порядку:
- \(\frac{5}{8} - \frac{3}{8} = \frac{5-3}{8} = \frac{2}{8} = \frac{1}{4}\)
- \(4\frac{5}{12} - 2\frac{7}{12} = (4-2) + (\frac{5}{12} - \frac{7}{12}) = 2 - \frac{2}{12} = 2 - \frac{1}{6} = 1\frac{6}{6} - \frac{1}{6} = 1\frac{5}{6}\)
- \(\frac{3}{8} + \frac{5}{24} = \frac{3 \cdot 3}{8 \cdot 3} + \frac{5}{24} = \frac{9}{24} + \frac{5}{24} = \frac{14}{24} = \frac{7}{12}\)
- \(1\frac{7}{12} + 3\frac{5}{9} = 1 + 3 + \frac{7}{12} + \frac{5}{9} = 4 + \frac{7 \cdot 3}{12 \cdot 3} + \frac{5 \cdot 4}{9 \cdot 4} = 4 + \frac{21}{36} + \frac{20}{36} = 4 + \frac{41}{36} = 4 + 1\frac{5}{36} = 5\frac{5}{36}\)
- \(\frac{5}{12} \cdot \frac{8}{15} = \frac{5 \cdot 8}{12 \cdot 15} = \frac{40}{180} = \frac{2}{9}\)
- \(2\frac{7}{9} \cdot 3\frac{3}{5} = \frac{2 \cdot 9 + 7}{9} \cdot \frac{3 \cdot 5 + 3}{5} = \frac{18+7}{9} \cdot \frac{15+3}{5} = \frac{25}{9} \cdot \frac{18}{5} = \frac{25 \cdot 18}{9 \cdot 5} = \frac{5 \cdot 2}{1 \cdot 1} = 10\)
- \(\frac{1}{12} : \frac{1}{6} = \frac{1}{12} \cdot \frac{6}{1} = \frac{6}{12} = \frac{1}{2}\)
- \(1\frac{7}{8} : 4\frac{1}{6} = \frac{1 \cdot 8 + 7}{8} : \frac{4 \cdot 6 + 1}{6} = \frac{15}{8} : \frac{25}{6} = \frac{15}{8} \cdot \frac{6}{25} = \frac{15 \cdot 6}{8 \cdot 25} = \frac{90}{200} = \frac{9}{20}\)
Ответ: 1) \(\frac{1}{4}\); 2) \(1\frac{5}{6}\); 3) \(\frac{7}{12}\); 4) \(5\frac{5}{36}\); 5) \(\frac{2}{9}\); 6) 10; 7) \(\frac{1}{2}\); 8) \(\frac{9}{20}\)