№5. Разложите на множители:
1) $$16x^2 - 49 = (4x)^2 - 7^2 = (4x - 7)(4x + 7)$$
2) $$9a^2 + 30ab + 25b^2 = (3a)^2 + 2 \cdot 3a \cdot 5b + (5b)^2 = (3a + 5b)^2$$
3) $$y^3 + 18y^2 + 81y = y(y^2 + 18y + 81) = y(y + 9)^2$$
4) $$xy^4 - 2y^4 - xy + 2y = y(xy^3 - 2y^3 - x + 2) = y[y^3(x - 2) - (x - 2)] = y(x - 2)(y^3 - 1) = y(x - 2)(y - 1)(y^2 + y + 1)$$
Ответ: 1) $$(4x - 7)(4x + 7)$$, 2) $$(3a + 5b)^2$$, 3) $$y(y + 9)^2$$, 4) $$y(x - 2)(y - 1)(y^2 + y + 1)$$,