Пусть ( y ) - количество книг на второй полке первоначально. Тогда на первой полке было ( 3y ) книг. После того, как с первой полки сняли 8 книг, а на вторую поставили 32 книги, на первой полке стало ( 3y - 8 ) книг, а на второй ( y + 32 ) книги. Так как книг на полках стало поровну, мы можем записать следующее уравнение:
( 3y - 8 = y + 32 )
Решим это уравнение:
( 3y - y = 32 + 8 )
( 2y = 40 )
( y = \frac{40}{2} )
( y = 20 )
Таким образом, первоначально на второй полке было 20 книг, а на первой ( 3 \cdot 20 = 60 ) книг.
**Ответ: На первой полке было 60 книг, на второй полке было 20 книг.**