Прежде всего, переведем смешанную дробь в неправильную: $$a = 1\frac{1}{2} = \frac{3}{2} = 1,5$$. Теперь подставим значения a и b в выражение:
$$\frac{(a+b)^2-1}{a^2+1} = \frac{(1,5+0,5)^2-1}{(1,5)^2+1} = \frac{(2)^2-1}{(2,25)+1} = \frac{4-1}{3,25} = \frac{3}{3,25}$$Чтобы избавиться от десятичной дроби в знаменателе, умножим числитель и знаменатель на 100:
$$\frac{3}{3,25} = \frac{3 \cdot 100}{3,25 \cdot 100} = \frac{300}{325}$$Теперь сократим дробь, разделив числитель и знаменатель на 25:
$$\frac{300}{325} = \frac{300 \div 25}{325 \div 25} = \frac{12}{13}$$Ответ: $$\frac{12}{13}$$