$$ \frac{2}{a(a+b)} + \frac{2}{b(a+b)} = \frac{2b + 2a}{ab(a+b)} = \frac{2(a+b)}{ab(a+b)} = \frac{2}{ab} $$
$$ \frac{y+c}{c(c+a)} + \frac{y-a}{a(c+a)} = \frac{a(y+c) + c(y-a)}{ac(c+a)} = \frac{ay + ac + cy - ac}{ac(c+a)} = \frac{ay + cy}{ac(c+a)} = \frac{y(a+c)}{ac(c+a)} = \frac{y}{ac} $$
Ответ: а) $$\frac{2}{ab}$$; б) $$\frac{y}{ac}$$