Вопрос:

Analyze the provided calculations and the graph to understand the function and its properties.

Ответ:

Let's analyze the provided information to understand the function and its graph.

The function seems to be:

$$y = 5 - \frac{x+5}{x^2+5x}$$

First, simplify the function:

$$y = 5 - \frac{x+5}{x(x+5)}$$

We must consider that (x eq 0) and (x eq -5), because these values would make the denominator zero.

If (x eq -5), we can simplify the fraction:

$$y = 5 - \frac{1}{x}$$

This is a hyperbola shifted vertically. Now, let's analyze the given calculations:

  • (y(1) = 5 - \frac{1}{1} = 5 - 1 = 4)
  • (y(-1) = 5 - \frac{1}{-1} = 5 + 1 = 6)
  • (y(\frac{1}{2}) = 5 - \frac{1}{\frac{1}{2}} = 5 - 2 = 3)
  • (y(-\frac{1}{2}) = 5 - \frac{1}{-\frac{1}{2}} = 5 + 2 = 7)
  • (y(-5) = 5 - \frac{1}{-5} = 5 + \frac{1}{5} = 5\frac{1}{5})
  • (y(5) = 5 - \frac{1}{5} = 4\frac{4}{5})
  • (y(-4) = 5 - \frac{1}{-4} = 5 + \frac{1}{4} = 5\frac{1}{4})

These calculations confirm the function (y = 5 - \frac{1}{x}) for (x eq -5).

The graph shows a hyperbola with a horizontal asymptote at (y = 5). There is a vertical asymptote at (x = 0).

Now let's plot the points:

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие