Для решения задачи необходимо найти длину окружности колеса автомобиля и затем, используя количество оборотов, определить пройденное расстояние.
1. Переведем расстояние, которое проехал автомобиль, в метры:
$$2 \text{ км } 826 \text{ м} = 2826 \text{ м}$$
2. Найдем длину окружности колеса, разделив общее пройденное расстояние на количество оборотов:
$$\frac{2826 \text{ м}}{1200} = 2.355 \text{ м}$$
3. Длина окружности $$C$$ связана с радиусом $$r$$ формулой $$C = 2 \pi r$$, где $$\pi \approx 3.14$$.
4. Выразим радиус колеса через длину окружности:
$$r = \frac{C}{2 \pi} = \frac{2.355}{2 \cdot 3.14} \approx 0.375 \text{ м}$$
5. Радиус колеса равен 0,375 м.
Ответ: 0,375 м