Let's solve the integral:
$$\int (2x^3 - x) dx$$
We can split the integral into two separate integrals:
$$\int 2x^3 dx - \int x dx$$
Now, we integrate each term separately. Recall that $$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$.
$$\int 2x^3 dx = 2 \int x^3 dx = 2 \cdot \frac{x^{3+1}}{3+1} + C_1 = 2 \cdot \frac{x^4}{4} + C_1 = \frac{x^4}{2} + C_1$$
$$\int x dx = \frac{x^{1+1}}{1+1} + C_2 = \frac{x^2}{2} + C_2$$
Now we combine the results:
$$\int (2x^3 - x) dx = \frac{x^4}{2} - \frac{x^2}{2} + C$$
where $$C = C_1 - C_2$$
Answer: $$\frac{x^4}{2} - \frac{x^2}{2} + C$$