Вопрос:

B-2. 1. Касательная к окружности параллельна радиусу в точке его касания. 2. Отрезки касательной к окружности, проведённые из одной точки, равны 3. Через точку, лежащую вне окружности, можно провести две касательные к этой окружности. 4. Каждая точка медианы угла равноудалена от его сторон. 5. Из каждой точки окружности любой диаметр, не проходящий через данную точку, виден под развернутым углом. 6. Радиус вписанной в треугольник окружности лежит на пересечении медиан 7. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. 8. Радиус описанной около треугольника окружности лежит на пересечении серединных перпендикуляров. 19. Диаметр, прог й к середине хорды, перпендикулярен этой хорде. 10. В треуго тив равных сторон лежат равные углы.

Ответ:

Вот разбор утверждений из представленного текста:

  1. Неверно. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
  2. Верно. Отрезки касательных, проведенные из одной точки вне окружности, равны.
  3. Верно. Из точки, лежащей вне окружности, можно провести две касательные к этой окружности.
  4. Верно. Каждая точка биссектрисы угла равноудалена от его сторон. Это свойство биссектрисы.
  5. Неверно. Из каждой точки окружности отрезок, соединяющий эту точку с концами диаметра, виден под прямым углом (90 градусов).
  6. Неверно. Радиус вписанной в треугольник окружности связан с точкой пересечения биссектрис, а не медиан. Точка пересечения медиан - это центроид (центр масс) треугольника.
  7. Верно. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
  8. Верно. Центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника.
  9. Часть предложения неполная. Предположительно, имеется в виду, что диаметр, проходящий через середину хорды, перпендикулярен этой хорде. В таком случае - верно.
  10. Часть предложения неполная. Предположительно, имеется в виду, что в треугольнике против равных сторон лежат равные углы. В таком случае - верно.
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие