B) $$\frac{4x^2 - 1}{3} = x(10x - 9)$$
$$4x^2 - 1 = 30x^2 - 27x$$
$$26x^2 - 27x + 1 = 0$$
$$D = (-27)^2 - 4 \cdot 26 \cdot 1 = 729 - 104 = 625$$
$$x_1 = \frac{27 + \sqrt{625}}{2 \cdot 26} = \frac{27 + 25}{52} = \frac{52}{52} = 1$$
$$x_2 = \frac{27 - \sqrt{625}}{2 \cdot 26} = \frac{27 - 25}{52} = \frac{2}{52} = \frac{1}{26}$$
Ответ: $$x_1 = 1$$, $$x_2 = \frac{1}{26}$$
г) $$\frac{3}{4}x^2 = \frac{2}{5}x^2 + \frac{3}{4}$$
$$\frac{3}{4}x^2 - \frac{2}{5}x^2 = \frac{3}{4}$$
$$\frac{15x^2 - 8x^2}{20} = \frac{3}{4}$$
$$\frac{7}{20}x^2 = \frac{3}{4}$$
$$x^2 = \frac{3}{4} \cdot \frac{20}{7}$$
$$x^2 = \frac{15}{7}$$
$$x_1 = \sqrt{\frac{15}{7}}$$
$$x_2 = -\sqrt{\frac{15}{7}}$$
Ответ: $$x_1 = \sqrt{\frac{15}{7}}$$, $$x_2 = -\sqrt{\frac{15}{7}}$$