Для решения этой задачи нам потребуется дополнительная информация или рисунок, связывающий отрезок MK со средней линией трапеции и основаниями. Также, нужно понимать, является ли трапеция равнобедренной или нет, и как расположена линия MK относительно сторон трапеции. Без этих данных решить задачу невозможно.
Если предположить, что MK является средней линией трапеции, тогда:
Пусть большее основание AD = 8 см.
Пусть меньшее основание BC = x см.
Средняя линия MK = (AD + BC) / 2 = (8 + x) / 2
По условию, меньшее основание на 3 см меньше средней линии, то есть:
x = (8 + x) / 2 - 3
Решим это уравнение:
$$x = \frac{8 + x}{2} - 3$$
$$2x = 8 + x - 6$$
$$2x - x = 2$$
$$x = 2$$
Таким образом, BC = 2 см.
Средняя линия MK = (8 + 2) / 2 = 10 / 2 = 5 см.
Ответ: BC = 2 см, MK = 5 см.