Вопрос:

Элли в волшебных туфельках убегает от саблезубых тигров по прямой тропе со скоростью 16 км/ч. Тигры бегут за ней со скоростью 54 км/ч. Навстречу Элли бежит Трусливый Лев, повредивший лапу, со скоростью 12 км/ч. Начальное расстояние между Элли и тиграми равно 1190 м, между Элли и Львом - 575 м. С какой скоростью сближаются Элли и Лев? Через какое время Элли встретит Льва? Ответ выразите в секундах, округлите до десятых.

Ответ:

  1. Скорость сближения Элли и Льва:

Элли и Лев движутся навстречу друг другу, следовательно, их скорости складываются:

$$16 \text{ км/ч} + 12 \text{ км/ч} = 28 \text{ км/ч}$$

Ответ: 28 км/ч

  1. Время встречи Элли и Льва:

Переведем расстояние между Элли и Львом из метров в километры:

$$575 \text{ м} = 0.575 \text{ км}$$

Время встречи равно расстоянию, деленному на скорость сближения:

$$t = \frac{S}{v} = \frac{0.575 \text{ км}}{28 \text{ км/ч}} = 0.0205357 \text{ ч}$$

Переведем время из часов в секунды:

$$0.0205357 \text{ ч} \cdot 3600 \text{ с/ч} = 73.92852 \text{ с}$$

Округлим до десятых:

$$73.92852 \text{ с} \approx 73.9 \text{ с}$$

Ответ: 73.9 с

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие