Вопрос:

Evaluate the following expression: $$\frac{\sqrt{65} \cdot \sqrt{13}}{\sqrt{5}}$$

Ответ:

Let's evaluate the expression step by step: First, we have $$ rac{\sqrt{65} \cdot \sqrt{13}}{\sqrt{5}}$$ We can rewrite $$\sqrt{65}$$ as $$\sqrt{5 \cdot 13}$$. So, the expression becomes $$ rac{\sqrt{5 \cdot 13} \cdot \sqrt{13}}{\sqrt{5}}$$ Now, we can rewrite this as $$ rac{\sqrt{5} \cdot \sqrt{13} \cdot \sqrt{13}}{\sqrt{5}}$$ We can cancel out the $$\sqrt{5}$$ from the numerator and denominator: $$\frac{\sqrt{5} \cdot \sqrt{13} \cdot \sqrt{13}}{\sqrt{5}} = \sqrt{13} \cdot \sqrt{13}$$ Since $$\sqrt{13} \cdot \sqrt{13} = 13$$, the expression simplifies to 13. Answer: 13
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие