Let's evaluate the expression step by step:
First, we have $$rac{\sqrt{65} \cdot \sqrt{13}}{\sqrt{5}}$$
We can rewrite $$\sqrt{65}$$ as $$\sqrt{5 \cdot 13}$$.
So, the expression becomes $$rac{\sqrt{5 \cdot 13} \cdot \sqrt{13}}{\sqrt{5}}$$
Now, we can rewrite this as $$rac{\sqrt{5} \cdot \sqrt{13} \cdot \sqrt{13}}{\sqrt{5}}$$
We can cancel out the $$\sqrt{5}$$ from the numerator and denominator:
$$\frac{\sqrt{5} \cdot \sqrt{13} \cdot \sqrt{13}}{\sqrt{5}} = \sqrt{13} \cdot \sqrt{13}$$
Since $$\sqrt{13} \cdot \sqrt{13} = 13$$, the expression simplifies to 13.
Answer: 13