y = (14x + 2)⁶
Используем правило цепочки: y' = 6(14x + 2)⁵ * 14
y' = 84(14x + 2)⁵
Ответ: y' = 84(14x + 2)⁵
y = (17 - 5x² + 6x)⁴
Используем правило цепочки: y' = 4(17 - 5x² + 6x)³ * (-10x + 6)
y' = (24 - 40x)(17 - 5x² + 6x)³
Ответ: y' = (24 - 40x)(17 - 5x² + 6x)³
y = 16(2x - 7)³
y' = 16 * 3(2x - 7)² * 2
y' = 96(2x - 7)²
Ответ: y' = 96(2x - 7)²
y = 1 / (9x + 1)⁴ = (9x + 1)⁻⁴
y' = -4(9x + 1)⁻⁵ * 9
y' = -36 / (9x + 1)⁵
Ответ: y' = -36 / (9x + 1)⁵
y = 3 / (3 - 4x)⁶ = 3(3 - 4x)⁻⁶
y' = 3 * (-6)(3 - 4x)⁻⁷ * (-4)
y' = 72 / (3 - 4x)⁷
Ответ: y' = 72 / (3 - 4x)⁷
y = 2√(7x + 11) = 2(7x + 11)^(1/2)
y' = 2 * (1/2) * (7x + 11)^(-1/2) * 7
y' = 7 / √(7x + 11)
Ответ: y' = 7 / √(7x + 11)
y = √(x/2) - 3 = (x/2)^(1/2) - 3
y' = (1/2)(x/2)^(-1/2) * (1/2)
y' = 1 / (4√(x/2)) = 1 / (2√2√x) = √2 / (4√x)
Ответ: y' = √2 / (4√x)
y = sin(6x - π/4)
y' = cos(6x - π/4) * 6
y' = 6cos(6x - π/4)
Ответ: y' = 6cos(6x - π/4)
y = 6cos(2x + π)
y' = 6 * (-sin(2x + π)) * 2
y' = -12sin(2x + π)
Ответ: y' = -12sin(2x + π)
y = tg(9x - π/3)
y' = (1 / cos²(9x - π/3)) * 9
y' = 9 / cos²(9x - π/3)
Ответ: y' = 9 / cos²(9x - π/3)
y = 7ctg(x/5 + π/2)
y' = 7 * (-1 / sin²(x/5 + π/2)) * (1/5)
y' = -7 / (5sin²(x/5 + π/2))
Ответ: y' = -7 / (5sin²(x/5 + π/2))
y = 3sin²(4x + π/6)
y' = 3 * 2sin(4x + π/6) * cos(4x + π/6) * 4
y' = 24sin(4x + π/6)cos(4x + π/6) = 12sin(8x + π/3)
Ответ: y' = 12sin(8x + π/3)