Чтобы найти коэффициент k, подставим координаты точки $$\left(8; -\frac{3}{8}\right)$$ в уравнение функции $$y = kx + 2\frac{5}{8}$$.
First convert the mixed number to an improper fraction:
$$2\frac{5}{8} = \frac{2 \cdot 8 + 5}{8} = \frac{16 + 5}{8} = \frac{21}{8}$$
So the equation is now:
$$y = kx + \frac{21}{8}$$
Now, substitute the given point's coordinates into the equation:
$$-\frac{3}{8} = k \cdot 8 + \frac{21}{8}$$
Subtract $$\frac{21}{8}$$ from both sides:
$$-\frac{3}{8} - \frac{21}{8} = 8k$$
$$-\frac{24}{8} = 8k$$
$$-3 = 8k$$
Divide by 8:
$$k = -\frac{3}{8}$$
Ответ: $$k = -\frac{3}{8}$$