Для уравнения окружности в виде $$(x - a)^2 + (y - b)^2 = R^2$$, центр окружности имеет координаты $$(a; b)$$.
В данном случае уравнение имеет вид $$(x - 3)^2 + (y + 1)^2 = 1$$, что можно переписать как $$(x - 3)^2 + (y - (-1))^2 = 1$$.
Следовательно, центр окружности имеет координаты $$(3; -1)$$.
Таким образом, правильный ответ: в) С(3; -1).
Ответ: в) С(3; -1)