Контрольные задания >
Какие числа обратны числам:
a) $$\frac{10}{36}$$, $$rac{13}{65}$$, $$\frac{31}{65}$$, $$\frac{13}{134}$$, $$\frac{17}{428}$$, $$\frac{10}{4}$$, $$\frac{36}{7}$$;
б) $$13\frac{13}{14}$$, $$\frac{1}{40}$$, 50, 100, 1, 0.5, 2.8?
Вопрос:
Какие числа обратны числам:
a) $$\frac{10}{36}$$, $$rac{13}{65}$$, $$\frac{31}{65}$$, $$\frac{13}{134}$$, $$\frac{17}{428}$$, $$\frac{10}{4}$$, $$\frac{36}{7}$$;
б) $$13\frac{13}{14}$$, $$\frac{1}{40}$$, 50, 100, 1, 0.5, 2.8?
Ответ:
Решение
а)
- Число, обратное $$\frac{10}{36}$$, равно $$\frac{36}{10} = \frac{18}{5}$$.
- Число, обратное $$\frac{13}{65}$$, равно $$\frac{65}{13} = 5$$.
- Число, обратное $$\frac{31}{65}$$, равно $$\frac{65}{31}$$.
- Число, обратное $$\frac{13}{134}$$, равно $$\frac{134}{13}$$.
- Число, обратное $$\frac{17}{428}$$, равно $$\frac{428}{17}$$.
- Число, обратное $$\frac{10}{4}$$, равно $$\frac{4}{10} = \frac{2}{5}$$.
- Число, обратное $$\frac{36}{7}$$, равно $$\frac{7}{36}$$.
б)
- Число, обратное $$13\frac{13}{14} = \frac{195}{14}$$, равно $$\frac{14}{195}$$.
- Число, обратное $$\frac{1}{40}$$, равно 40.
- Число, обратное 50, равно $$\frac{1}{50}$$.
- Число, обратное 100, равно $$\frac{1}{100}$$.
- Число, обратное 1, равно 1.
- Число, обратное 0.5, равно $$\frac{1}{0.5} = 2$$.
- Число, обратное 2.8, равно $$\frac{1}{2.8} = \frac{1}{\frac{28}{10}} = \frac{10}{28} = \frac{5}{14}$$.
Смотреть решения всех заданий с листаПохожие
- Какие числа обратны числам:
a) $$\frac{10}{36}$$, $$rac{13}{65}$$, $$\frac{31}{65}$$, $$\frac{13}{134}$$, $$\frac{17}{428}$$, $$\frac{10}{4}$$, $$\frac{36}{7}$$;
б) $$13\frac{13}{14}$$, $$\frac{1}{40}$$, 50, 100, 1, 0.5, 2.8?
- Найдите значение выражения:
a) $$\frac{6}{13} \cdot 19\frac{1}{2}$$;
б) $$1\frac{10}{11} \cdot 3\frac{1}{7}$$;
в) $$0.4 \cdot 3\frac{1}{3}$$;
г) $$0.6 \cdot \frac{2}{3}$$;
д) $$(0.3 + 0.5) \cdot 1\frac{1}{2}$$;
e) $$(1.3 - 0.7) \cdot 1\frac{2}{3}$$