1. Представьте в виде дроби:
a) $$ \frac{28b^6}{c^3} \cdot \frac{c^5}{84b^6} = \frac{28b^6c^5}{84b^6c^3} = \frac{c^2}{3} $$
б) $$ 30x^2y : \frac{72xy}{z} = \frac{30x^2y}{1} \cdot \frac{z}{72xy} = \frac{30x^2yz}{72xy} = \frac{5xz}{12} $$
в) $$ \frac{3x+6}{x+3} \cdot \frac{x^2-9}{x^2-4} = \frac{3(x+2)}{x+3} \cdot \frac{(x-3)(x+3)}{(x-2)(x+2)} = \frac{3(x-3)}{x-2} $$
г) $$ \frac{2a-b}{a} + \frac{a}{2a-b} = \frac{(2a-b)^2 + a^2}{a(2a-b)} = \frac{4a^2 - 4ab + b^2 + a^2}{a(2a-b)} = \frac{5a^2 - 4ab + b^2}{a(2a-b)} $$
2. Упростите:
a) $$ \frac{a^2-b^2}{a^2-2ab+b^2} \cdot (a - b) = \frac{(a-b)(a+b)}{(a-b)^2} \cdot (a - b) = (a+b) $$
б) $$ (\frac{3n}{n-4} - \frac{6n}{n^2-8n+16}) : \frac{n-6}{16-n^2} + \frac{24n}{n-4} = (\frac{3n}{n-4} - \frac{6n}{(n-4)^2}) \cdot \frac{-(n-4)(n+4)}{n-6} + \frac{24n}{n-4} = \frac{3n(n-4) - 6n}{(n-4)^2} \cdot \frac{-(n-4)(n+4)}{n-6} + \frac{24n}{n-4} = \frac{3n^2 - 12n - 6n}{(n-4)^2} \cdot \frac{-(n-4)(n+4)}{n-6} + \frac{24n}{n-4} = \frac{3n^2 - 18n}{(n-4)^2} \cdot \frac{-(n-4)(n+4)}{n-6} + \frac{24n}{n-4} = \frac{3n(n-6)}{(n-4)^2} \cdot \frac{-(n-4)(n+4)}{n-6} + \frac{24n}{n-4} = \frac{-3n(n+4)}{n-4} + \frac{24n}{n-4} = \frac{-3n^2 - 12n + 24n}{n-4} = \frac{-3n^2 + 12n}{n-4} = \frac{-3n(n-4)}{n-4} = -3n $$