1) $$5x\cdot4y = 20xy$$
2) $$24k\cdot11p = 264kp$$
3) $$-x^2\cdot4x^4 = -4x^6$$
4) $$6a\cdot(-\frac{1}{2}a^3) = -3a^4$$
5) $$\frac{1}{2}x^3\cdot\frac{1}{3}y^4\cdot\frac{1}{6}p^5 = \frac{1}{36}x^3y^4p^5$$
6) $$-7x^2y\cdot(-4xy^2) = 28x^3y^3$$
7) $$(+\frac{2}{3}c^3d^2)\cdot(-\frac{3}{4}c^2d) = -\frac{1}{2}c^5d^3$$
8) $$(-m^2n^2)\cdot(+\frac{5}{6}m^3n) = -\frac{5}{6}m^5n^3$$
9) $$(-0,6x^2y^3)\cdot(+0,5x^3y^3) = -0,3x^5y^6$$
10) $$(+2,4k^2b^4)\cdot(-0,5k^3) = -1,2k^5b^4$$
11) $$(-8a^3b^2c)\cdot(2ab^2c^3) = -16a^4b^4c^4$$
12) $$(-1\frac{1}{2}x^2yz)\cdot(-1\frac{1}{3}xy^2z^3) = \frac{2}{3}x^3y^3z^4$$
13) $$(\frac{1}{4}a^2b^2c^3d)\cdot(-\frac{2}{5}a^3bc^2) = -\frac{1}{10}a^5b^3c^5d$$
14) $$(-2,5m^3n^2p)\cdot(-3,4m^2n^3pq^2) = 8,5m^5n^5p^2q^2$$
15) $$(3a^n)\cdot(-4a) = -12a^{n+1}$$
16) $$(-5x^{n+1})\cdot(-2x^2) = 10x^{n+3}$$
17) $$(4m^2n)\cdot(-6m^{k-1}n^{k+1}) = -24m^{k+1}n^{k+2}$$
18) $$(-0,4a^nb^m)\cdot(-0,8a^{n+1}b^{2m}) = 0,32a^{2n+1}b^{3m}$$
19) $$(-\frac{2}{3}x^{k-1}y^2)\cdot(-\frac{3}{4}xy^{k+1}) = \frac{1}{2}x^ky^{k+3}$$
20) $$(-8a^mx^{n+1}y^n)\cdot(-\frac{1}{2}a^{3-m}x^{n-1}) = 4a^3x^{2n}y^n$$
21) $$3x^2\cdot \mathbf{8x^2y} = 24x^4y$$
22) $$\mathbf{-4x^3y^3}\cdot5x^3y^2 = -20x^4y^5$$
23) $$0,75x^{5n-2}b^4p^2\cdot(-4x^{5-3n}b^{2n}p^3) = -3x^{2n+3}b^{4+2n}p^5$$
24) $$(-\frac{5}{13}a^{4n-1}c^{2k-1+n})\cdot(\frac{13}{15}a^{n+5}c^{2k+3-n}) = -\frac{1}{3}a^{5n+4}c^{4k+2}$$
25) Представьте одночлен $$-32a^8d^{11}$$ в виде:
a) двух одночленов: $$-4a^2d^5 \cdot 8a^6d^6$$
b) трех одночленов: $$-2a^2 \cdot 4d^3 \cdot 4a^6d^8$$
в) четырех одночленов: $$-2a \cdot ad^2 \cdot 2d^3 \cdot 4a^6d^6$$
г) пяти одночленов: $$-2 \cdot a \cdot ad \cdot 2d^2 \cdot 4a^6d^8$$
26) $$\frac{(-5^4)^3\cdot(5^2)^6}{((-5)^5)^5} = \frac{5^{12}\cdot5^{12}}{-5^{25}} = \frac{5^{24}}{-5^{25}} = -\frac{1}{5}$$
27) $$\frac{(3^5)^8\cdot(81^4)^5}{(27^{13})^4} = \frac{3^{40}\cdot(3^4)^{20}}{(3^3)^{52}} = \frac{3^{40}\cdot3^{80}}{3^{156}} = \frac{3^{120}}{3^{156}} = \frac{1}{3^{36}}$$
28) $$\frac{(36^2)^3\cdot(4^6)^4\cdot(27^3)^2}{(12^3)^{10}\cdot64} = \frac{(6^2\cdot6^2\cdot6^2)\cdot(4^{24})\cdot(3^3\cdot3^3)}{(12^{30})\cdot64} = \frac{2^{18}\cdot3^{18}\cdot4^{24}\cdot3^{12}}{2^{60}\cdot3^{30}\cdot2^6} = \frac{2^{18}\cdot3^{18}\cdot2^{48}\cdot3^{12}}{2^{66}\cdot3^{30}} = \frac{2^{66}\cdot3^{30}}{2^{66}\cdot3^{30}} = 1$$