б) Упростим выражение:
$$1\frac{4}{37} + \frac{3}{16}n - \frac{4}{37} + 2\frac{3}{12}n = (1\frac{4}{37} - \frac{4}{37}) + (\frac{3}{16} + 2\frac{3}{12})n = 1 + (\frac{3}{16} + 2\frac{1}{4})n = 1 + (\frac{3}{16} + \frac{9}{4})n = 1 + (\frac{3}{16} + \frac{36}{16})n = 1 + \frac{39}{16}n$$
Подставим значение $$n = 3\frac{1}{5} = \frac{16}{5}$$:
$$1 + \frac{39}{16} \cdot \frac{16}{5} = 1 + \frac{39 \cdot 16}{16 \cdot 5} = 1 + \frac{39}{5} = \frac{5}{5} + \frac{39}{5} = \frac{44}{5} = 8\frac{4}{5}$$
Ответ: $$8\frac{4}{5}$$