1) Площадь квадрата равна квадрату длины его стороны. В данном случае сторона равна \(\frac{5}{9}\) дм, поэтому площадь \(S\) равна:
\(S = (\frac{5}{9})^2 = \frac{5^2}{9^2} = \frac{25}{81}\) кв. дм
2) Объём куба равен кубу длины его ребра, а площадь полной поверхности куба равна шести площадям его грани. Ребро куба равно \(\frac{4}{7}\) м.
Объём куба \(V\) равен:
\(V = (\frac{4}{7})^3 = \frac{4^3}{7^3} = \frac{64}{343}\) куб. м
Площадь полной поверхности \(S\) куба равна:
\(S = 6 \cdot (\frac{4}{7})^2 = 6 \cdot \frac{4^2}{7^2} = 6 \cdot \frac{16}{49} = \frac{96}{49} \approx 1,96\) кв. м
Ответ: 1) \(\frac{25}{81}\) кв. дм; 2) \(\frac{64}{343}\) куб. м, \(\frac{96}{49}\) кв. м