Всего участников - 400.
В первых двух аудиториях - по 140 человек, то есть (140 \times 2 = 280) человек.
В запасной аудитории: (400 - 280 = 120) человек.
Вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории равна отношению числа участников в запасной аудитории к общему числу участников.
(P = \frac{\text{Количество участников в запасной аудитории}}{\text{Общее количество участников}})
(P = \frac{120}{400} = 0.3)
Ответ: Вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории равна 0.3 или 30%.