Рассмотрим треугольники ABO и CDO.
1) ∠B = ∠D = 91°.
2) ∠AOB = ∠COD (как вертикальные углы).
Следовательно, треугольники ABO и CDO подобны по двум углам (первый признак подобия треугольников).
Так как BD = 12 см и BO = 6 см, то OD = BD - BO = 12 - 6 = 6 см.
Тогда BO = OD = 6 см.
Из подобия треугольников следует, что \(\frac{AB}{CD} = \frac{BO}{OD}\). Отсюда:
\(\frac{AB}{11} = \frac{6}{6}\)
\(\frac{AB}{11} = 1\)
AB = 11 см.
Ответ: AB = 11 см.