Решение:
а) Так как BN – биссектриса угла MBC, то ∠MBN = ∠NBC. Следовательно, ∠MBC = 2 * ∠MBN.
∠MBC = 2 * 55° = 110°.
Угол ABC – развернутый, значит, ∠ABC = 180°.
∠ABM = ∠ABC - ∠MBC = 180° - 110° = 70°.
Ответ: ∠ABM = 70°.
б) Угол ABK вертикальный углу NBC, а вертикальные углы равны, следовательно, ∠ABK = ∠NBC. Так как ∠NBC = ∠MBN = 55°, то ∠ABK = 55°.
Ответ: ∠ABK = 55°.
в) ∠CBK = ∠ABC - ∠ABK = 180° - 55° = 125°.
Ответ: ∠CBK = 125°.