Сначала упростим дроби и приведем их к знаменателю 24:
\(\frac{1}{24}\)
\(\frac{6}{24} = \frac{1}{4}\)
\(\frac{11}{24}\)
\(\frac{12}{24} = \frac{1}{2}\)
\(\frac{15}{24} = \frac{5}{8}\)
\(\frac{16}{24} = \frac{2}{3}\)
\(\frac{22}{24} = \frac{11}{12}\)
\(\frac{3}{12} = \frac{1}{4} = \frac{6}{24}\)
\(\frac{6}{12} = \frac{1}{2} = \frac{12}{24}\)
\(\frac{5}{8} = \frac{15}{24}\)
\(\frac{3}{6} = \frac{1}{2} = \frac{12}{24}\)
\(\frac{1}{4} = \frac{6}{24}\)
\(\frac{2}{3} = \frac{16}{24}\)
\(\frac{1}{2} = \frac{12}{24}\)
Теперь отметим эти точки на координатном луче (можно нарисовать в тетради). Определим равные координаты:
\(\frac{6}{24} = \frac{3}{12} = \frac{1}{4}\)
\(\frac{12}{24} = \frac{6}{12} = \frac{3}{6} = \frac{1}{2}\)
\(\frac{15}{24} = \frac{5}{8}\)
\(\frac{16}{24} = \frac{2}{3}\)
Ответ:
\(\frac{6}{24} = \frac{3}{12} = \frac{1}{4}\)
\(\frac{12}{24} = \frac{6}{12} = \frac{3}{6} = \frac{1}{2}\)
\(\frac{15}{24} = \frac{5}{8}\)
\(\frac{16}{24} = \frac{2}{3}\)