Давайте решим эту задачу по шагам. Сначала разберемся с атомом меди, а затем с атомом серебра.
Атом меди (Cu):
1. Определение числа протонов и нейтронов:
* Медь имеет атомный номер 29, что означает, что в ядре 29 протонов (Z = 29).
* Массовое число (A) меди можно приближенно определить как 63,55, но поскольку число нейтронов должно быть целым числом, мы округлим его до 64. Количество нейтронов (N) равно A - Z = 64 - 29 = 35.
2. Расчет дефекта массы (Δm) в а.е.м.:
Используем формулу: $$\Delta m = Zm_p + Nm_n - m_я$$, где:
* $$m_p$$ = масса протона = 1,00728 а.е.м.
* $$m_n$$ = масса нейтрона = 1,00866 а.е.м.
* $$m_я$$ = масса ядра меди = 63,55 а.е.м.
$$\Delta m = (29 \times 1,00728) + (35 \times 1,00866) - 63,55$$
$$\Delta m = 29,21112 + 35,3031 - 63,55$$
$$\Delta m = 64,51422 - 63,55$$
$$\Delta m = 0,96422 \text{ а.е.м.}$$
3. Перевод дефекта массы в кг:
1 а.е.м. = $$1,66054 \times 10^{-27}$$ кг
$$\Delta m = 0,96422 \times 1,66054 \times 10^{-27} \text{ кг}$$
$$\Delta m = 1,60117 \times 10^{-27} \text{ кг}$$
4. Расчет энергии связи (E) в Джоулях:
Используем формулу Эйнштейна: $$E = \Delta m c^2$$, где:
* c = скорость света = $$2,99792 \times 10^8$$ м/с
$$E = 1,60117 \times 10^{-27} \times (2,99792 \times 10^8)^2$$
$$E = 1,60117 \times 10^{-27} \times 8,98752 \times 10^{16}$$
$$E = 1,43907 \times 10^{-10} \text{ Дж}$$
Ответ для меди:
* Дефект массы в а.е.м.: 0,96422 а.е.м.
* Дефект массы в кг: $$1,60117 \times 10^{-27}$$ кг
* Энергия связи: $$1,43907 \times 10^{-10}$$ Дж
Атом серебра (Ag):
1. Определение числа протонов и нейтронов:
* Серебро имеет атомный номер 47, что означает, что в ядре 47 протонов (Z = 47).
* Массовое число (A) серебра можно приближенно определить как 107,87, но поскольку число нейтронов должно быть целым числом, мы округлим его до 108. Количество нейтронов (N) равно A - Z = 108 - 47 = 61.
2. Расчет дефекта массы (Δm) в а.е.м.:
Используем формулу: $$\Delta m = Zm_p + Nm_n - m_я$$, где:
* $$m_p$$ = масса протона = 1,00728 а.е.м.
* $$m_n$$ = масса нейтрона = 1,00866 а.е.м.
* $$m_я$$ = масса ядра серебра = 107,87 а.е.м.
$$\Delta m = (47 \times 1,00728) + (61 \times 1,00866) - 107,87$$
$$\Delta m = 47,34216 + 61,52826 - 107,87$$
$$\Delta m = 108,87042 - 107,87$$
$$\Delta m = 1,00042 \text{ а.е.м.}$$
3. Перевод дефекта массы в кг:
1 а.е.м. = $$1,66054 \times 10^{-27}$$ кг
$$\Delta m = 1,00042 \times 1,66054 \times 10^{-27} \text{ кг}$$
$$\Delta m = 1,66124 \times 10^{-27} \text{ кг}$$
4. Расчет энергии связи (E) в Джоулях:
Используем формулу Эйнштейна: $$E = \Delta m c^2$$, где:
* c = скорость света = $$2,99792 \times 10^8$$ м/с
$$E = 1,66124 \times 10^{-27} \times (2,99792 \times 10^8)^2$$
$$E = 1,66124 \times 10^{-27} \times 8,98752 \times 10^{16}$$
$$E = 1,49305 \times 10^{-10} \text{ Дж}$$
Ответ для серебра:
* Дефект массы в а.е.м.: 1,00042 а.е.м.
* Дефект массы в кг: $$1,66124 \times 10^{-27}$$ кг
* Энергия связи: $$1,49305 \times 10^{-10}$$ Дж