Площадь круга вычисляется по формуле: $$S = \pi r^2$$, где $$r$$ - радиус круга.
В данном случае, $$S = 36\pi \text{ см}^2$$.
Выразим радиус из формулы площади круга:
$$r = \sqrt{\frac{S}{\pi}}$$.
Подставим значение площади в формулу:
$$r = \sqrt{\frac{36\pi}{\pi}} = \sqrt{36} = 6 \text{ см}$$.
Диаметр равен удвоенному радиусу: $$d = 2r$$.
$$d = 2 \cdot 6 = 12 \text{ см}$$.
Ответ: $$12 \text{ см}$$