Вопрос:

6. Найдите коллинеарные векторы: а {-4;6}, b {3;-2), c {2;-3}, d {6;4}.

Ответ:

Проверим коллинеарность векторов. Два вектора коллинеарны, если их координаты пропорциональны. Вектор a {-4; 6} и вектор b {3; -2}: -4/3 = 6/(-2) -> -4/3 = -3 (не коллинеарны) Вектор a {-4; 6} и вектор c {2; -3}: -4/2 = 6/(-3) -> -2 = -2 (коллинеарны) Вектор a {-4; 6} и вектор d {6; 4}: -4/6 = 6/4 -> -2/3 = 3/2 (не коллинеарны) Вектор b {3; -2} и вектор c {2; -3}: 3/2 = -2/(-3) -> 3/2 = 2/3 (не коллинеарны) Вектор b {3; -2} и вектор d {6; 4}: 3/6 = -2/4 -> 1/2 = -1/2 (не коллинеарны) Вектор c {2; -3} и вектор d {6; 4}: 2/6 = -3/4 -> 1/3 = -3/4 (не коллинеарны) Ответ: Коллинеарные векторы: a {-4; 6} и c {2; -3}.
Смотреть решения всех заданий с фото

Похожие