1)
\[a^{-9} \cdot (a^2)^6 = a^{-9} \cdot a^{2\cdot6} = a^{-9} \cdot a^{12} = a^{-9+12} = a^3\]
Если \[a = 5\], то
\[5^3 = 5\cdot5\cdot5 = 125\]
2)
\[\frac{a^{10}}{a^{12}} = a^{10-12} = a^{-2} = \frac{1}{a^2}\]
Если \[a = 2\], то
\[\frac{1}{2^2} = \frac{1}{4} = 0.25\]
3)
\[\frac{a^{19}}{a^{13}} \cdot a^{11} : a^{21} = a^{19-13} \cdot a^{11-21} = a^6 \cdot a^{-10} = a^{6-10} = a^{-4} = \frac{1}{a^4}\]
Если \[a = 4\], то
\[\frac{1}{4^4} = \frac{1}{256}\]
4)
\[\frac{(a^3)^4 \cdot a^{12}}{a^{21}} = \frac{a^{3\cdot4} \cdot a^{12}}{a^{21}} = \frac{a^{12} \cdot a^{12}}{a^{21}} = \frac{a^{12+12}}{a^{21}} = \frac{a^{24}}{a^{21}} = a^{24-21} = a^3\]
Если \[a = 5\] то
\[5^3 = 125\]
5)
\[\frac{a^{14} \cdot (b^4)^3}{(a \cdot b)^{12}} = \frac{a^{14} \cdot b^{4\cdot3}}{a^{12} \cdot b^{12}} = \frac{a^{14} \cdot b^{12}}{a^{12} \cdot b^{12}} = a^{14-12} = a^2\]
Если \[a = 3, b = \sqrt{3}\] то
\[3^2 = 9\]
Ответ: 1) 125; 2) 0.25; 3) 1/256; 4) 125; 5) 9