Решение:
Сначала упростим выражение, а затем подставим значения $$p$$ и $$q$$.
$$\left(\frac{1}{3p} - \frac{1}{7q}\right) : \left(\frac{q}{3} - \frac{p}{7}\right) = \frac{\frac{7q - 3p}{21pq}}{\frac{7q - 3p}{21}} = \frac{7q - 3p}{21pq} \cdot \frac{21}{7q - 3p} = \frac{1}{pq}$$
Теперь подставим значения $$p = \frac{1}{\sqrt{5}}$$ и $$q = \sqrt{80}$$.
$$\frac{1}{pq} = \frac{1}{\frac{1}{\sqrt{5}} \cdot \sqrt{80}} = \frac{1}{\frac{\sqrt{80}}{\sqrt{5}}} = \frac{1}{\sqrt{\frac{80}{5}}} = \frac{1}{\sqrt{16}} = \frac{1}{4}$$
Ответ: $$\frac{1}{4}$$