a |
1 |
2 |
-2 |
-1 |
b |
1 |
-1 |
-3 |
1 |
1) 2a+b |
$$2*1 + 1 = 3$$ |
$$2*2 + (-1) = 4 - 1 = 3$$ |
$$2*(-2) + (-3) = -4 - 3 = -7$$ |
$$2*(-1) + 1 = -2 + 1 = -1$$ |
2) 2(a+b) |
$$2*(1+1) = 2*2 = 4$$ |
$$2*(2 + (-1)) = 2*(2-1) = 2*1 = 2$$ |
$$2*(-2 + (-3)) = 2*(-2-3) = 2*(-5) = -10$$ |
$$2*(-1+1) = 2*0 = 0$$ |
3) 2a+b^2 |
$$2*1 + 1^2 = 2 + 1 = 3$$ |
$$2*2 + (-1)^2 = 4 + 1 = 5$$ |
$$2*(-2) + (-3)^2 = -4 + 9 = 5$$ |
$$2*(-1) + 1^2 = -2 + 1 = -1$$ |
4) 2(a+b^2) |
$$2*(1 + 1^2) = 2*(1+1) = 2*2 = 4$$ |
$$2*(2 + (-1)^2) = 2*(2+1) = 2*3 = 6$$ |
$$2*(-2 + (-3)^2) = 2*(-2 + 9) = 2*7 = 14$$ |
$$2*(-1 + 1^2) = 2*(-1 + 1) = 2*0 = 0$$ |
5) 2(a+b)^2 |
$$2*(1+1)^2 = 2*(2)^2 = 2*4 = 8$$ |
$$2*(2 + (-1))^2 = 2*(1)^2 = 2*1 = 2$$ |
$$2*(-2 + (-3))^2 = 2*(-5)^2 = 2*25 = 50$$ |
$$2*(-1 + 1)^2 = 2*(0)^2 = 2*0 = 0$$ |
6) 2a^2+b |
$$2*1^2 + 1 = 2*1 + 1 = 2 + 1 = 3$$ |
$$2*2^2 + (-1) = 2*4 - 1 = 8 - 1 = 7$$ |
$$2*(-2)^2 + (-3) = 2*4 - 3 = 8 - 3 = 5$$ |
$$2*(-1)^2 + 1 = 2*1 + 1 = 2 + 1 = 3$$ |
7) 2(a^2+b) |
$$2*(1^2 + 1) = 2*(1 + 1) = 2*2 = 4$$ |
$$2*(2^2 + (-1)) = 2*(4-1) = 2*3 = 6$$ |
$$2*((-2)^2 + (-3)) = 2*(4-3) = 2*1 = 2$$ |
$$2*((-1)^2 + 1) = 2*(1 + 1) = 2*2 = 4$$ |
8) 2a^2+b^2 |
$$2*1^2 + 1^2 = 2*1 + 1 = 2 + 1 = 3$$ |
$$2*2^2 + (-1)^2 = 2*4 + 1 = 8 + 1 = 9$$ |
$$2*(-2)^2 + (-3)^2 = 2*4 + 9 = 8 + 9 = 17$$ |
$$2*(-1)^2 + 1^2 = 2*1 + 1 = 2 + 1 = 3$$ |