Вопрос:

Найдите значение выражения при данных значениях переменных a и b:

Ответ:

a 1 2 -2 -1
b 1 -1 -3 1
1) 2a+b $$2*1 + 1 = 3$$ $$2*2 + (-1) = 4 - 1 = 3$$ $$2*(-2) + (-3) = -4 - 3 = -7$$ $$2*(-1) + 1 = -2 + 1 = -1$$
2) 2(a+b) $$2*(1+1) = 2*2 = 4$$ $$2*(2 + (-1)) = 2*(2-1) = 2*1 = 2$$ $$2*(-2 + (-3)) = 2*(-2-3) = 2*(-5) = -10$$ $$2*(-1+1) = 2*0 = 0$$
3) 2a+b^2 $$2*1 + 1^2 = 2 + 1 = 3$$ $$2*2 + (-1)^2 = 4 + 1 = 5$$ $$2*(-2) + (-3)^2 = -4 + 9 = 5$$ $$2*(-1) + 1^2 = -2 + 1 = -1$$
4) 2(a+b^2) $$2*(1 + 1^2) = 2*(1+1) = 2*2 = 4$$ $$2*(2 + (-1)^2) = 2*(2+1) = 2*3 = 6$$ $$2*(-2 + (-3)^2) = 2*(-2 + 9) = 2*7 = 14$$ $$2*(-1 + 1^2) = 2*(-1 + 1) = 2*0 = 0$$
5) 2(a+b)^2 $$2*(1+1)^2 = 2*(2)^2 = 2*4 = 8$$ $$2*(2 + (-1))^2 = 2*(1)^2 = 2*1 = 2$$ $$2*(-2 + (-3))^2 = 2*(-5)^2 = 2*25 = 50$$ $$2*(-1 + 1)^2 = 2*(0)^2 = 2*0 = 0$$
6) 2a^2+b $$2*1^2 + 1 = 2*1 + 1 = 2 + 1 = 3$$ $$2*2^2 + (-1) = 2*4 - 1 = 8 - 1 = 7$$ $$2*(-2)^2 + (-3) = 2*4 - 3 = 8 - 3 = 5$$ $$2*(-1)^2 + 1 = 2*1 + 1 = 2 + 1 = 3$$
7) 2(a^2+b) $$2*(1^2 + 1) = 2*(1 + 1) = 2*2 = 4$$ $$2*(2^2 + (-1)) = 2*(4-1) = 2*3 = 6$$ $$2*((-2)^2 + (-3)) = 2*(4-3) = 2*1 = 2$$ $$2*((-1)^2 + 1) = 2*(1 + 1) = 2*2 = 4$$
8) 2a^2+b^2 $$2*1^2 + 1^2 = 2*1 + 1 = 2 + 1 = 3$$ $$2*2^2 + (-1)^2 = 2*4 + 1 = 8 + 1 = 9$$ $$2*(-2)^2 + (-3)^2 = 2*4 + 9 = 8 + 9 = 17$$ $$2*(-1)^2 + 1^2 = 2*1 + 1 = 2 + 1 = 3$$
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие