Решение №3:
a) $$5x^2 - 20 = 0$$
$$5x^2 = 20$$
$$x^2 = 4$$
$$x = \pm 2$$
Ответ: x₁ = 2, x₂ = -2
b) $$16x + x^2 = 0$$
$$x(16+x) = 0$$
$$x = 0$$ или $$16 + x = 0$$
$$x = -16$$
Ответ: x₁ = 0, x₂ = -16
c) $$\frac{x^2}{8} - 1 = 0$$
$$\frac{x^2}{8} = 1$$
$$x^2 = 8$$
$$x = \pm \sqrt{8} = \pm 2\sqrt{2}$$
Ответ: $$x_1 = 2\sqrt{2}, x_2 = -2\sqrt{2}$$
Решение №4:
a) $$-x^2 + 2x + 8 = 0$$
$$x^2 - 2x - 8 = 0$$
$$D = (-2)^2 - 4 \cdot 1 \cdot (-8) = 4 + 32 = 36$$
$$x_1 = \frac{-(-2) + \sqrt{36}}{2 \cdot 1} = \frac{2 + 6}{2} = 4$$
$$x_2 = \frac{-(-2) - \sqrt{36}}{2 \cdot 1} = \frac{2 - 6}{2} = -2$$
Ответ: x₁ = 4, x₂ = -2
b) $$x^2 + 8 = 6x$$
$$x^2 - 6x + 8 = 0$$
$$D = (-6)^2 - 4 \cdot 1 \cdot 8 = 36 - 32 = 4$$
$$x_1 = \frac{-(-6) + \sqrt{4}}{2 \cdot 1} = \frac{6 + 2}{2} = 4$$
$$x_2 = \frac{-(-6) - \sqrt{4}}{2 \cdot 1} = \frac{6 - 2}{2} = 2$$
Ответ: x₁ = 4, x₂ = 2
c) $$5x^2 + 1 = 6x - 4x^2$$
$$9x^2 - 6x + 1 = 0$$
$$D = (-6)^2 - 4 \cdot 9 \cdot 1 = 36 - 36 = 0$$
$$x = \frac{-(-6) + \sqrt{0}}{2 \cdot 9} = \frac{6}{18} = \frac{1}{3}$$
Ответ: x = 1/3