$$k = tg(\alpha) = tg(\frac{\pi}{4}) = 1$$.
$$y_0 = kx_0 + b$$
$$-3 = 1 \cdot 2 + b$$
$$b = -3 - 2 = -5$$
Ответ: $$k = 1$$, $$b = -5$$.
$$k = tg(\alpha) = tg(\frac{\pi}{4}) = 1$$.
$$y_0 = kx_0 + b$$
$$2 = 1 \cdot (-3) + b$$
$$b = 2 + 3 = 5$$
Ответ: $$k = 1$$, $$b = 5$$.
$$k = tg(\alpha) = tg(-\frac{\pi}{3}) = -\sqrt{3}$$.
$$y_0 = kx_0 + b$$
$$1 = -\sqrt{3} \cdot 1 + b$$
$$b = 1 + \sqrt{3}$$
Ответ: $$k = -\sqrt{3}$$, $$b = 1 + \sqrt{3}$$.
$$k = tg(\alpha) = tg(-\frac{\pi}{6}) = -\frac{1}{\sqrt{3}}$$.
$$y_0 = kx_0 + b$$
$$-1 = -\frac{1}{\sqrt{3}} \cdot (-1) + b$$
$$b = -1 - \frac{1}{\sqrt{3}} = -1 - \frac{\sqrt{3}}{3}$$
Ответ: $$k = -\frac{1}{\sqrt{3}}$$, $$b = -1 - \frac{\sqrt{3}}{3}$$.