Дано: Окружность с центром в точке O, AB - диаметр, ∠ABC = 34°.
Найти: ∠BOC.
Решение:
1) ∠ABC - вписанный угол, опирающийся на дугу AC. Вписанный угол равен половине дуги, на которую он опирается. Следовательно, дуга AC равна 2 * ∠ABC = 2 * 34° = 68°.
2) ∠BOC - центральный угол, опирающийся на дугу AC. Центральный угол равен дуге, на которую он опирается. Следовательно, ∠BOC = 68°.
Ответ: ∠BOC = 68°