Вопрос:

Периметр параллелограмма равен 52 см, одна из его сторон на 4 см больше другой. Найдите стороны параллелограмма. Дано: ABCD – параллелограмм, BC – AB = 4 см, PABCD = 52 см. Найти: AB, BC.

Ответ:

Пусть (AB = x) см, тогда (BC = x + 4) см.

Периметр параллелограмма равен сумме длин всех его сторон. Так как противоположные стороны параллелограмма равны, то:

$$P_{ABCD} = 2(AB + BC)$$

Подставим известные значения:

$$52 = 2(x + x + 4)$$

Решим уравнение:

$$52 = 2(2x + 4)$$ $$52 = 4x + 8$$ $$4x = 52 - 8$$ $$4x = 44$$ $$x = 11$$

Следовательно, (AB = 11) см.

Найдем длину стороны BC:

$$BC = AB + 4 = 11 + 4 = 15$$

Следовательно, (BC = 15) см.

Ответ: AB = 11 см, BC = 15 см.

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие