Вопрос:

Площадь параллелограмма АВСD равна 112. Точка Е – середина стороны АВ. Найдите площадь треугольника СВЕ.

Смотреть решения всех заданий с листа

Ответ:

Площадь параллелограмма ABCD равна 112. Площадь параллелограмма равна произведению высоты на основание.

$$S_{ABCD} = h \cdot AB = 112$$

Точка E - середина стороны AB, значит, $$AE = EB = \frac{1}{2} AB$$.

Площадь треугольника CBE равна половине произведения высоты на основание.

$$S_{CBE} = \frac{1}{2} h \cdot EB = \frac{1}{2} h \cdot \frac{1}{2} AB = \frac{1}{4} h \cdot AB$$

Так как $$h \cdot AB = 112$$, то $$S_{CBE} = \frac{1}{4} \cdot 112 = 28$$.

Ответ: 28

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие