Для построения таблиц истинности, нам потребуется рассмотреть все возможные комбинации значений переменных (A, B, C, D) и вычислить значение каждого выражения для каждой комбинации.
1) $$(\overline{A \rightarrow B}) \rightarrow C$$
| A | B | C | $$A \rightarrow B$$ | $$\overline{A \rightarrow B}$$ | $$(\overline{A \rightarrow B}) \rightarrow C$$ |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 |
2) $$(A + \overline{B}) \cdot (\overline{A} + B)$$
| A | B | $$\overline{A}$$ | $$\overline{B}$$ | $$A + \overline{B}$$ | $$\overline{A} + B$$ | $$(A + \overline{B}) \cdot (\overline{A} + B)$$ |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 |
3) $$((A \mid B) \mid C) \mid D$$
| A | B | C | D | $$A \mid B$$ | $$(A \mid B) \mid C$$ | $$((A \mid B) \mid C) \mid D$$ |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 |
4) $$(A \oplus \overline{B}) \cdot C$$
| A | B | C | $$\overline{B}$$ | $$A \oplus \overline{B}$$ | $$(A \oplus \overline{B}) \cdot C$$ |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 | 1 |
Пояснения к таблицам: