a) $$n^4 \cdot n^6 = n^{4+6} = n^{10}$$
б) $$x^4 \cdot x^4 \cdot x^8 = x^{4+4+8} = x^{16}$$
в) $$(y+6)^5 \cdot (y+6) = (y+6)^5 \cdot (y+6)^1 = (y+6)^{5+1} = (y+6)^6$$
a) $$a^{15} : a^4 = a^{15-4} = a^{11}$$
б) $$y^9 : y^8 = y^{9-8} = y^1 = y$$
в) $$(x-y)^{12} : (x-y)^6 = (x-y)^{12-6} = (x-y)^6$$
a) $$(x^2)^{10} = x^{2 \cdot 10} = x^{20}$$
б) $$(\frac{3}{7}ab)^3 = \frac{3^3}{7^3} a^3 b^3 = \frac{27}{343} a^3 b^3$$
a) $$x^8y^8 = (xy)^8$$
б) $$36a^2b^2 = 6^2a^2b^2 = (6ab)^2$$
в) $$\frac{-125m^3}{216n^3} = \frac{(-5)^3m^3}{(6)^3n^3} = (\frac{-5m}{6n})^3$$
a) $$(a^3)^4 = a^{3 \cdot 4} = a^{12}$$
б) $$(-a^7)^2 = (-1 \cdot a^7)^2 = (-1)^2 \cdot (a^7)^2 = 1 \cdot a^{7 \cdot 2} = a^{14}$$
в) $$(a^3)^3 \cdot a^9 = a^{3 \cdot 3} \cdot a^9 = a^9 \cdot a^9 = a^{9+9} = a^{18}$$
a) $$\frac{5^9 \cdot 13^9}{65^8} = \frac{5^9 \cdot 13^9}{(5 \cdot 13)^8} = \frac{5^9 \cdot 13^9}{5^8 \cdot 13^8} = 5^{9-8} \cdot 13^{9-8} = 5^1 \cdot 13^1 = 5 \cdot 13 = 65$$
б) $$\frac{24^7}{4^{10} \cdot 11^8} = \frac{(4 \cdot 6)^7}{4^{10} \cdot 11^8} = \frac{4^7 \cdot 6^7}{4^{10} \cdot 11^8} = \frac{6^7}{4^{10-7} \cdot 11^8} = \frac{6^7}{4^3 \cdot 11^8} = \frac{279936}{64 \cdot 390625 \cdot 121} = \frac{279936}{307200000}$$