a) $$(3x^2)^3 \cdot 2x = 3^3 \cdot (x^2)^3 \cdot 2x = 27x^6 \cdot 2x = 54x^{6+1} = $$\mathbf{54x^7}$$
б) $$(-y^3)^3 \cdot 4y^2 = (-1)^3 \cdot (y^3)^3 \cdot 4y^2 = -1 \cdot y^9 \cdot 4y^2 = -4y^{9+2} = $$\mathbf{-4y^{11}}$$
в) $$(-a^4)^3 \cdot 15a^{12} = (-1)^3 \cdot (a^4)^3 \cdot 15a^{12} = -1 \cdot a^{12} \cdot 15a^{12} = -15a^{12+12} = $$\\mathbf{-15a^{24}}$$
г) $$(\frac{2}{3}n)^3 \cdot (-6n^2)^2 = (\frac{2}{3})^3 \cdot n^3 \cdot (-6)^2 \cdot (n^2)^2 = \frac{8}{27}n^3 \cdot 36n^4 = \frac{8 \cdot 36}{27}n^{3+4} = \frac{8 \cdot 4}{3}n^7 = $$\\frac{32}{3}n^7$$