2. Преобразуйте в многочлен:
1) a) $$(a-4)(a+4)-2a(3-a) = a^2 - 16 - 6a + 2a^2 = 3a^2 - 6a - 16$$
б) $$(4x-3)^2 - 6x(4-x) = 16x^2 - 24x + 9 - 24x + 6x^2 = 22x^2 - 48x + 9$$
2) a) $$(a-8)(a-7) - (a-9)^2 = a^2 - 15a + 56 - (a^2 - 18a + 81) = a^2 - 15a + 56 - a^2 + 18a - 81 = 3a - 25$$
б) $$(p+3)(p-11) + (p+6)^2 = p^2 - 8p - 33 + p^2 + 12p + 36 = 2p^2 + 4p + 3$$
3) a) $$(b+3)(b-3) + (2b+3)^2 = b^2 - 9 + 4b^2 + 12b + 9 = 5b^2 + 12b$$
б) $$(a-x)^2 + (a+x)^2 = a^2 - 2ax + x^2 + a^2 + 2ax + x^2 = 2a^2 + 2x^2$$
4) a) $$3(x-5)^2 + (10x - 8x^2) = 3(x^2 - 10x + 25) + 10x - 8x^2 = 3x^2 - 30x + 75 + 10x - 8x^2 = -5x^2 - 20x + 75$$
б) $$2(x+6)^2 - (20x + 70) = 2(x^2 + 12x + 36) - 20x - 70 = 2x^2 + 24x + 72 - 20x - 70 = 2x^2 + 4x + 2$$
3. Найдите значение выражения:
a) $$(2+3x)(5-x) - (2-3x)(5+x)$$ при $$x = -1.1$$
$$(2+3x)(5-x) - (2-3x)(5+x) = 10 - 2x + 15x - 3x^2 - (10 + 2x - 15x - 3x^2) = 10 + 13x - 3x^2 - 10 + 13x + 3x^2 = 26x$$
Подставим $$x = -1.1$$: $$26 cdot (-1.1) = -28.6$$
**Ответ: -28.6**
б) $$(3a+b)^2 - (3a-b)^2$$ при $$a = 3\frac{1}{3}, b = -0.3$$
$$(3a+b)^2 - (3a-b)^2 = (9a^2 + 6ab + b^2) - (9a^2 - 6ab + b^2) = 9a^2 + 6ab + b^2 - 9a^2 + 6ab - b^2 = 12ab$$
Подставим $$a = 3\frac{1}{3} = \frac{10}{3}, b = -0.3 = -\frac{3}{10}$$:
$$12ab = 12 cdot \frac{10}{3} cdot (-\frac{3}{10}) = 12 cdot (-1) = -12$$
**Ответ: -12**