Вопрос:

74. Преобразуйте выражение в многочлен стандартного вида да и укажите его степень: 4) 2a⁴ - 8a³b-2a²b² - 4ab³-3a⁴ + 8a²b+ 9a²b² + ab³.

Смотреть решения всех заданий с листа

Ответ:

Приведем подобные слагаемые:

$$2a^4 - 8a^3b - 2a^2b^2 - 4ab^3 - 3a^4 + 8a^3b + 9a^2b^2 + ab^3 = (2a^4 - 3a^4) + (-8a^3b + 8a^3b) + (-2a^2b^2 + 9a^2b^2) + (-4ab^3 + ab^3) = -a^4 + 0 + 7a^2b^2 - 3ab^3 = -a^4 + 7a^2b^2 - 3ab^3$$

Степень многочлена определяется наибольшей суммой показателей степеней переменных в одночлене. В данном случае:

  • В одночлене $$-a^4$$ степень равна 4.
  • В одночлене $$7a^2b^2$$ степень равна $$2 + 2 = 4$$.
  • В одночлене $$-3ab^3$$ степень равна $$1 + 3 = 4$$.

Наибольшая сумма равна 4.

Ответ: $$-a^4 + 7a^2b^2 - 3ab^3$$, степень 4.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие