a) $$(5x + 3)^2 = 5(x + 3)$$
$$(5x + 3)^2 - 5(x + 3) = 0$$
$$(5x + 3)(5x + 3 - 5) = 0$$
$$(5x + 3)(5x - 2) = 0$$
$$5x + 3 = 0$$ или $$5x - 2 = 0$$
$$x_1 = -\frac{3}{5}$$ или $$x_2 = \frac{2}{5}$$
б) $$(3x + 10)^2 = 3(x + 10)$$
$$(3x + 10)^2 - 3(x + 10) = 0$$
$$(3x + 10)(3x + 10 - 3) = 0$$
$$(3x + 10)(3x + 7) = 0$$
$$3x + 10 = 0$$ или $$3x + 7 = 0$$
$$x_1 = -\frac{10}{3}$$ или $$x_2 = -\frac{7}{3}$$
в) $$(3x - 8)^2 = 3x^2 - 8x$$
$$9x^2 - 48x + 64 = 3x^2 - 8x$$
$$6x^2 - 40x + 64 = 0$$
$$3x^2 - 20x + 32 = 0$$
$$D = (-20)^2 - 4 * 3 * 32 = 400 - 384 = 16$$
$$x_1 = \frac{20 + 4}{6} = \frac{24}{6} = 4$$
$$x_2 = \frac{20 - 4}{6} = \frac{16}{6} = \frac{8}{3}$$
г) $$(4x + 5)^2 = 5x^2 + 4x$$
$$16x^2 + 40x + 25 = 5x^2 + 4x$$
$$11x^2 + 36x + 25 = 0$$
$$D = 36^2 - 4 * 11 * 25 = 1296 - 1100 = 196$$
$$x_1 = \frac{-36 + 14}{22} = \frac{-22}{22} = -1$$
$$x_2 = \frac{-36 - 14}{22} = \frac{-50}{22} = -\frac{25}{11}$$