Дефект массы рассчитывается по формуле:
$$\Delta m = Z \cdot m_p + N \cdot m_n - m_{\text{ядра}}$$
Где:
- $$\Delta m$$ - дефект массы
- $$Z$$ - количество протонов
- $$m_p$$ - масса протона
- $$N$$ - количество нейтронов
- $$m_n$$ - масса нейтрона
- $$m_{\text{ядра}}$$ - масса ядра
Для изотопа углерода $$^{12}_{6}C$$:
- $$Z = 6$$ (6 протонов)
- $$N = 12 - 6 = 6$$ (6 нейтронов)
- $$m_p = 1.0073$$ а.е.м.
- $$m_n = 1.0087$$ а.е.м.
- $$m_{\text{ядра}} = 12.00$$ а.е.м.
Подставляем значения в формулу:
$$\Delta m = 6 \cdot 1.0073 + 6 \cdot 1.0087 - 12.00$$
$$\Delta m = 6.0438 + 6.0522 - 12.00$$
$$\Delta m = 12.096 - 12.00 = 0.096 \approx 0,1 \text{ а.е.м.}$$
Ответ: B. 0,1