Задание 1.
$$\begin{cases} x + y = 7, \\ x - 3y = -5; \end{cases}$$Выразим x из первого уравнения: $$x = 7 - y$$. Подставим это выражение во второе уравнение:
$$(7 - y) - 3y = -5$$ $$7 - y - 3y = -5$$ $$7 - 4y = -5$$ $$-4y = -5 - 7$$ $$-4y = -12$$ $$y = \frac{-12}{-4}$$ $$y = 3$$Теперь найдем x:
$$x = 7 - y = 7 - 3 = 4$$Ответ:
$$x = 4, y = 3$$Задание 2.
$$\begin{cases} 4x - y = 3, \\ x - y = 6; \end{cases}$$Выразим y из второго уравнения: $$y = x - 6$$. Подставим это выражение в первое уравнение:
$$4x - (x - 6) = 3$$ $$4x - x + 6 = 3$$ $$3x = 3 - 6$$ $$3x = -3$$ $$x = \frac{-3}{3}$$ $$x = -1$$Теперь найдем y:
$$y = x - 6 = -1 - 6 = -7$$Ответ:
$$x = -1, y = -7$$Задание 3.
а)
$$\begin{cases} y - x = 9, \\ 7y - x = -3; \end{cases}$$Выразим y из первого уравнения: $$y = x + 9$$. Подставим это выражение во второе уравнение:
$$7(x + 9) - x = -3$$ $$7x + 63 - x = -3$$ $$6x = -3 - 63$$ $$6x = -66$$ $$x = \frac{-66}{6}$$ $$x = -11$$Теперь найдем y:
$$y = x + 9 = -11 + 9 = -2$$Ответ:
$$x = -11, y = -2$$б)
$$\begin{cases} 5x + y = 6, \\ x + y = -10 \end{cases}$$Выразим y из второго уравнения: $$y = -10 - x$$. Подставим это выражение в первое уравнение:
$$5x + (-10 - x) = 6$$ $$5x - 10 - x = 6$$ $$4x = 6 + 10$$ $$4x = 16$$ $$x = \frac{16}{4}$$ $$x = 4$$Теперь найдем y:
$$y = -10 - x = -10 - 4 = -14$$Ответ:
$$x = 4, y = -14$$