Решим уравнение:
$$-\frac{1}{4}x^2 + \frac{1}{3}x + \frac{5}{4} = 0$$
$$x = \frac{-\frac{1}{3} \pm \sqrt{(\frac{1}{3})^2 - 4(-\frac{1}{4})(\frac{5}{4})}}{2(-\frac{1}{4})}$$
$$x = \frac{-\frac{1}{3} \pm \sqrt{\frac{1}{9} + \frac{5}{4}}}{-\frac{1}{2}}$$
$$x = \frac{-\frac{1}{3} \pm \sqrt{\frac{49}{36}}}{-\frac{1}{2}}$$
$$x = \frac{-\frac{1}{3} \pm \frac{7}{6}}{-\frac{1}{2}}$$
$$x_1 = \frac{-\frac{1}{3} + \frac{7}{6}}{-\frac{1}{2}} = \frac{\frac{5}{6}}{-\frac{1}{2}} = -\frac{5}{3}$$
$$x_2 = \frac{-\frac{1}{3} - \frac{7}{6}}{-\frac{1}{2}} = \frac{-\frac{9}{6}}{-\frac{1}{2}} = 3$$
Ответ: -$$\frac{5}{3}$$; 3